Site-specific ADP-ribosylation of histone H2B in response to DNA double strand breaks
نویسندگان
چکیده
ADP-ribosyltransferases (ARTs) modify proteins with single units or polymers of ADP-ribose to regulate DNA repair. However, the substrates for these enzymes are ill-defined. For example, although histones are modified by ARTs, the sites on these proteins ADP-ribosylated following DNA damage and the ARTs that catalyse these events are unknown. This, in part, is due to the lack of a eukaryotic model that contains ARTs, in addition to histone genes that can be manipulated to assess ADP-ribosylation events in vivo. Here we exploit the model Dictyostelium to identify site-specific histone ADP-ribosylation events in vivo and define the ARTs that mediate these modifications. Dictyostelium histones are modified in response to DNA double strand breaks (DSBs) in vivo by the ARTs Adprt1a and Adprt2. Adprt1a is a mono-ART that modifies H2BE18 in vitro, although disruption of this site allows ADP-ribosylation at H2BE19. Although redundancy between H2BE18 and H2BE19 ADP-ribosylation is also apparent following DSBs in vivo, by generating a strain with mutations at E18/E19 in the h2b locus we demonstrate these are the principal sites modified by Adprt1a/Adprt2. This identifies DNA damage induced histone mono-ADP-ribosylation sites by specific ARTs in vivo, providing a unique platform to assess how histone ADP-ribosylation regulates DNA repair.
منابع مشابه
Biotinylation of K12 in histone H4 decreases in response to DNA double-strand breaks in human JAr choriocarcinoma cells.
We tested the hypothesis that biotinylation of K12 in histone H4 plays a role in the cellular response to double-strand breaks (DSB) of DNA in human cells. DSB were caused by treating choriocarcinoma JAr cells with etoposide. Biotinylation of K12 in histone H4 decreased by 50% as early as 10-20 min after initiation of treatment with etoposide. Biotinylation returned to initial levels 30-40 min ...
متن کاملBiotinylation of K12 in Histone H4 Decreases in Response to DNA Double-Strand Breaks in Human JAr Choriocarcinoma Cells1,2
We tested the hypothesis that biotinylation of K12 in histone H4 plays a role in the cellular response to double-strand breaks (DSB) of DNA in human cells. DSB were caused by treating choriocarcinoma JAr cells with etoposide. Biotinylation of K12 in histone H4 decreased by 50% as early as 10–20 min after initiation of treatment with etoposide. Biotinylation returned to initial levels 30–40 min ...
متن کاملPARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2BGlu2
PARP3 is a member of the ADP-ribosyl transferase superfamily that we show accelerates the repair of chromosomal DNA single-strand breaks in avian DT40 cells. Two-dimensional nuclear magnetic resonance experiments reveal that PARP3 employs a conserved DNA-binding interface to detect and stably bind DNA breaks and to accumulate at sites of chromosome damage. PARP3 preferentially binds to and is a...
متن کاملDNA strand breaks alter histone ADP-ribosylation.
Histone ADP-ribosylation was studied using two-dimensional gel electrophoresis after cleavage of the nuclear DNA with nucleases. Modified histones carrying different numbers of ADP-ribose groups form a ladder of bands above each variant histone. Cellular lysates containing unfragmented DNA mainly synthesize mono(ADP-ribosylated) histones. Cleavage of the DNA with either DNase I or micrococcal n...
متن کاملALTERATIONS OF ADP-RIBOSYLATION AND DNA-BREAKS IN AGING BRAIN CELLS
Neuronal and astroglial cells were prepared from whole brain of three month and 30-month- old rats for study of alterations in the nuclear poly ADP-ribosylation and DNA breaks with age. The relative purity of the cell preparations was confirmed by the determination of the neurofilament (low molecular weight) and glutamine synthetase content of the cells using ELISA. An increase (75%) in th...
متن کامل